Development of an Internet of Things Based Microclimate Control System for Aglaonema Plants
DOI:
https://doi.org/10.63296/jgh.v4i2.63Keywords:
Aglaonema, Internet of Things, ESP32, DHT22, Soil Moisture SensorAbstract
Aglaonema is an ornamental plant with high aesthetic and economic value, whose growth and quality are strongly influenced by microclimate conditions such as temperature, air humidity, and soil moisture. This study aims to develop an Internet of Things (IoT) based microclimate control system for Aglaonema plants capable of monitoring and controlling environmental conditions automatically and in real time. The system is designed using an ESP32 microcontroller as the main controller, a DHT22 sensor for measuring temperature and air humidity, a soil moisture sensor for monitoring growing media conditions, and actuators consisting of a cooling fan and a water pump. Environmental data are transmitted to the ThingSpeak platform to support remote monitoring. System testing includes sensor accuracy evaluation, actuator response testing, and assessment of the system’s impact on plant growth. The results indicate that the sensors exhibit good accuracy and stability, the actuators operate correctly according to predefined control logic, and the system effectively maintains optimal microclimate conditions for plant growth. The proposed system has the potential to support more efficient and automated Aglaonema cultivation under a limited experimental scale.
References
Ahmad, Y. A., Surya Gunawan, T., Mansor, H., Hamida, B. A., Fikri Hishamudin, A., & Arifin, F. (2021). On the Evaluation of DHT22 Temperature Sensor for IoT Application. 2021 8th International Conference on Computer and Communication Engineering (ICCCE), 131–134. https://doi.org/10.1109/ICCCE50029.2021.9467147
Akwu, S., Bature, U. I., Jahun, K. I., Baba, M. A., & Nasir, A. Y. (2020). Automatic plant Irrigation Control System Using Arduino and GSM Module. International Journal of Engineering and Manufacturing, 10(3), 12–26. https://doi.org/10.5815/ijem.2020.03.02
Arauz, J., & Fynn-Cudjoe, T. (2013). Actuator quality in the Internet of Things. 2013 IEEE International Conference on Sensing, Communications and Networking (SECON), 34–42. https://doi.org/10.1109/SAHCN.2013.6644957
Cameron, N. (2023). ESP32 Microcontroller (pp. 1–54). https://doi.org/10.1007/978-1-4842-9376-8_1
Dwi Sasmita, S., Adi Wibowo, S., & Primaswara Prasetya, R. (2021). Penerapan Iot (Internet of Thing) Smart Flower Container Pada Tanaman Hias Aglaonema Berbasis Arduino. JATI (Jurnal Mahasiswa Teknik Informatika), 5(2), 776–784. https://doi.org/10.36040/jati.v5i2.3770
García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2020). IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture. Sensors, 20(4), 1042. https://doi.org/10.3390/s20041042
Haras, M., & Skotnicki, T. (2018). Thermoelectricity for IoT – A review. Nano Energy, 54, 461–476. https://doi.org/10.1016/j.nanoen.2018.10.013
Indrajati, S. B., Saputra, L. D., & Yuniar, A. R. (2023). Panduan Teknis Budidaya Anggrek Phalaenopsis. Pertanian Press.
Indrajati, S. B., Saputro, L. D., & Yuniar, A. R. (2022). Panduan Teknis Budidaya Tanaman Hias Daun Seri 1 : Aglaonema . Kementrian Pertanian.
Maulidda, R., Atika, R., Alfarizal, N., & Karlina Dwita, A. (2025). Sistem Kontrol Monitoring Penyiram Tanaman Aglaonema Menggunakan Sensor Capacitive Soil Moisture dan DS-18B20 Berbasis Internet of Things (IoT). Jurnal Ampere, 10(1), 44–54. https://doi.org/10.31851/ampere.v10i1.18512
Obaideen, K., Yousef, B. A. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7, 100124. https://doi.org/10.1016/j.nexus.2022.100124
Placidi, P., Gasperini, L., Grassi, A., Cecconi, M., & Scorzoni, A. (2020). Characterization of Low-Cost Capacitive Soil Moisture Sensors for IoT Networks. Sensors, 20(12), 3585. https://doi.org/10.3390/s20123585
Purwoko, J. T., Wingardi, T. O., & Soewito, B. (2023). Smart Agriculture Water System Using Crop Water Stress Index and Weather Prediction. CommIT (Communication and Information Technology) Journal, 17(1), 61–70. https://doi.org/10.21512/commit.v17i1.8435
Setyawan, D. (2022). Tinjauan Peningkatan Penjualan Tanaman Hias di Masa Pandemi dengan Life Cycle Assesment (LCA). National Multidisciplinary Sciences, 1(2), 185–193. https://doi.org/10.32528/nms.v1i2.54
Statistik Pertanian Hortikultura. (2021). Produksi Tanaman Hias Menurut Jenis Tanaman, 2021. Badan Pusat Statistika. https://www.bps.go.id/id/statistics-table/3/VEd4alYzcHFaakJwVUhOQlVVNTNjbEZqVGtKb1FUMDkjMw==/produksi-tanaman-hias-menurut---jenis-tanaman--2021.html?year=2021
Statistik Pertanian Hortikultura. (2023). Produksi Tanaman Hias Menurut Jenis Tanaman, 2023. Badan Pusat Statistika. https://www.bps.go.id/id/statistics-table/3/VEd4alYzcHFaakJwVUhOQlVVNTNjbEZqVGtKb1FUMDkjMw==/produksi-tanaman-hias-menurut---jenis-tanaman--2023.html?year=2023
Lestari, W. P., Anisa, M., Murdaningrum, S., & Rohmad, B. (2025). Produk Domestik Bruto Indonesia Triwulanan 2021–2025 (Direktorat Neraca Produksi, Ed.; Vol. 8). Badan Pusat Statistik.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Alvin Candra Wijaya, Diena Widyastuti, Didik Suprayitno, Nunuk Hariyani, Sri Sulastri

This work is licensed under a Creative Commons Attribution 4.0 International License.








